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Adhesive restorative materials: A review

MJ Tyas,* MF Burrow†

Abstract
‘Adhesive’ restorative dentistry originated with the
work of Buonocore in 1955 in bonding resin to
etched enamel. Since then, adhesive materials and
techniques have developed at a rapid rate. The first
chemically adhesive material (zinc polycarboxylate
cement) was marketed in the late 1960s, and glass-
ionomer cements and dentine bonding agents have
since become available.
This review focuses on the latter two products.
Glass-ionomer cements have a particular role in
adhesive dentistry because of their reliable chemical
adhesion to enamel and dentine, and because of their
apparent ability to promote the remineralization of
‘affected’ dentine. Dentine bonding agents have
undergone marked changes in presentation over the
last 15 years, but all have an essentially similar
bonding system, that of hybrid layer formation.
However, the most recent systems have limited
clinical data supporting their use.
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The basic bonding mechanism was an ionic attraction
between two carboxyl (COO-) groups in the cement to
the calcium (Ca++) in enamel and dentine. Further work
by Wilson’s team4 resulted in the introduction of glass-
ionomer (glass polyalkenoate) cements, based
essentially on the liquid of the polycarboxylate
cements. Polycarboxylate cements are now little used,
as the glass-ionomers have a wider range of
applications and are easier to use.

Glass-ionomer cement is water-based, and therefore
compatible with dentine, which is a water-containing
tissue as well as commonly having a film of odontoblast
tubular fluid on the cut surface. In contrast, resin
composite is a hydrophobic material and thus is
relatively incompatible with dentine. The problem of
bonding hydrophobic resin to dentine was largely
resolved by the work of Nakabayashi.5,6

This review will focus on the two adhesive systems
most relevant for today’s dentistry: glass-ionomer
cements, and dentine bonding agents (DBAs) for resin
composite. Bonding of resin composite to etched
enamel will not be discussed further as it is a well-
established technique and has changed little for several
years. In contrast, there is increasing interest in glass-
ionomers, and DBAs are constantly evolving.

Glass-ionomer cements
The original glass-ionomer cements (GICs) were

water-based materials which set by an acid-base
reaction between a polyalkenoic acid and a
fluroaluminosilicate glass.4 Since these were brittle
materials, attempts were made to enhance the physical
properties by the addition of either metal particles
(silver or gold), by a fusion process resulting in a
‘cermet’ (ceramic-metal),7 or amalgam alloy particles by
a simple addition (‘admix’). The use of ‘metal-
reinforced’ GICs appears to be diminishing following
the introduction of high powder:liquid ratio products,
which are described below, and will not be discussed
further.

Further modification of water-based (‘conventional’)
GICs took place in the early 1990s by the addition of
water-soluble resin,8 to produce the ‘resin-modified’
GICs. The purpose of adding resin was to enhance the
physical properties and to reduce the sensitivity to

INTRODUCTION
The pioneering work of Michael Buonocore nearly

50 years ago1 marked the beginning of successful
‘adhesive’ dentistry. Buonocore1 was able to
demonstrate that the treatment of enamel with
phosphoric acid resulted in a porous surface, which
could be infiltrated by resin, to produce a strong
micromechanical bond. However, the clinical
application of acid etching was not realized until 15
years later when resin composites became available as a
result of the work of Bowen’s group.2 

In contrast to micromechanical bonding to tooth
tissue, chemical bonding was developed by Smith3 and
resulted in the introduction of polycarboxylate cement.
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water balance of the conventional GICs. The first of the
‘resin-modified’ GICs (RM-GICs) was Vitrabond 
(3M Dental Products, St Paul, Minnesota, USA), now
called Vitrebond (3M/Espe Dental). Vitrebond is a
liner/base material, and several restorative RM-GICs
are now available, including Vitremer (3M/Espe
Dental), Fuji II LC (GC International, Tokyo, Japan)
and Photac-Fil (3M/Espe, Seefeld, Bavaria, Germany).
Other names for RM-GIC which have been used
include ‘resin-ionomers’, ‘resinomers’, ‘hybrid ionomers’
and ‘light-cured glass ionomers’. The last should not be
used as some products are not light-cured (see below);
‘resin-modified glass-ionomers’ is preferred.9

Setting reactions
Conventional GICs set by a complex reaction

between the (acidic) liquid and the (basic) powder.
(Some products have the polyalkenoic acid freeze dried
in the powder, and the liquid is either water or tartaric
acid.) A simplified description10,11 of the setting reaction
is adequate for this review.

On mixing powder and liquid, the acid attacks the
glass resulting in surface degradation of the glass and
release of metal ions (e.g., strontium, calcium,
aluminium), fluoride ions and silicic acid. The metal
ions react with the carboxyl (COO-) groups to form a
polyacid salt, which becomes the cement matrix, and
the surface of the glass becomes a silica hydrogel. The
unreacted cores of the glass particles remain as a filler.

Although the clinical set is completed within a few
minutes, a continuing ‘maturation’ phase occurs over
subsequent months. This is predominantly due to the
slow reaction of the aluminium ions,11 and is the cause
of the set material’s sensitivity to water balance. The set
material needs to be protected from salivary
contamination for several hours, otherwise the surface
becomes weak and opaque, and from water loss for
several months, otherwise the material shrinks and
cracks and may debond.11

The RM-GICs also undergo an acid:base reaction
(which is a pre-requisite for any material to be
described as a glass-ionomer cement). However, there is
an additional resin polymerization phase. Depending
on the product, the resin polymerization may be self-
cure, light-cure or both. On mixing powder and liquid,
the acid:base reaction, and if present, the self-cure resin
polymerization reaction, begin and setting commences.
Restorative RM-GICs (in contrast to luting RM-GICs)
undergo photopolymerization on exposure to light,
resulting in clinical set. However, the acid:base reaction
continues, albeit much more slowly. Although the set
material can be contoured and polished under water
spray immediately following polymerization, delayed
polishing has been recommended.12 However,
dehydration remains a potential problem.10 All GICs
show an increase in translucency at seven days
compared to that at placement, resulting in an aesthetic
improvement.11

Classification
The most practical classification of the GICs is on

their clinical usage.11,13 Type I GICs are the luting
cements, characterized by low film thickness and rapid
set; when available as an RM-GIC, the
photopolymerization reaction will be absent. Type II
GICs are restorative cements, with sub-types 1 and 2.
Type II-1 GICs are aesthetic cements (available in both
conventional and resin-modified presentations) and
Type II-2 GICs are ‘reinforced’ (however, despite their
description, are not necessarily stronger than Type II-1
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Fig 1. Restorations (arrowed) using a high powder:liquid ratio
conventional glass-ionomer cement (Fuji IX GP, GC Corporation,

Japan) in 74 disto-occlusal and 75 mesio-occlusal surfaces.

Fig 2. Restorations (arrowed) after two years clinical service.
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products). However, they are more wear-resistant.7

Type III GICs are the lining cements and fissure
sealants, characterized by low viscosity and rapid set.

In the mid- to late-1990s, high powder:liquid ratio
conventional GICs were introduced, alternatively
termed ‘packable’ or ‘high viscosity’ GICs.10 These
products (e.g., Ketac Molar, 3M/Espe, Seefeld, Bavaria,
Germany; Chemflex, Dentsply, York, Pennsylvania,
USA; Fuji IX and Fuji IX GP, GC International) are
promoted principally for small cavities in deciduous
teeth (Fig 1, 2),14 temporary restorations, liner/base
applications, and in the ‘Atraumatic Restorative
Treatment’ (ART) technique.15

Bonding mechanism
The bonding mechanism of the GICs to the dental

hard tissues is very complex, and may be different for
RM-GICs compared to conventional GICs.
Simplistically, an ionic bond occurs between the
carboxyl (COO-) ions in the cement acid and the
calcium (Ca++) ions in enamel and dentine.

When freshly mixed conventional GIC is placed on
enamel or dentine, dissolution of any smear layer
occurs but demineralization is minimal since the tooth
hydroxyapatite buffers the acid, and polyalkenoic is
quite weak.16 Phosphate ions (negatively charged) and
calcium ions (positively charged) are displaced from the
hydroxyapatite, and are absorbed into the unset
cement. This results in an intermediate layer between
the ‘pure’ GIC and the ‘pure’ hydroxyapatite; the so-
called ‘ion-exchange’ layer.11 Problems of specimen
preparation of a water-based material have hindered
investigation of this layer, although better techniques
are now becoming available.17

The ion-exchange layer appears to consist of calcium
and phosphate ions from the GIC, and aluminium,
silicic, fluoride and calcium and/or strontium ions
(depending on glass composition) from the GIC.18 The

thickness of the ion-exchange layer appears to be in the
order of a few micrometres,17,19 and merges into the GIC
on one side and into the enamel/dentine on the other.
Unfortunately there is some confusion in the literature
regarding the ion-exchange layer. Other terms have
been proposed such as ‘zone of interaction’,17 ‘inter-
diffusion zone’,20 ‘hybrid layer’,21 ‘interphase’,22 and
‘intermediate layer’.19 In particular, the notation ‘hybrid
layer’21 causes confusion with the ‘hybrid layer’ formed
between resin composite and dentine (see below). The
term ‘ion-exchange layer’ should be used, since it
accurately describes its nature. It has been shown that
this layer is resistant to acid and base treatment, and
has thus also been referred to as the ‘acid-base resistant
layer’ (Fig 3).

Ionic bonding between the carboxyl ions from the
cement acid and the calcium ions from the tooth
structure has been confirmed using X-ray photon
spectrometry,23 and ionic bonding to the collagen of
dentine has been proposed24 but not investigated.

Measurement of the bond strength of GIC to enamel
and dentine is complicated by the brittle nature of the
GIC. Laboratory bond strength tests invariably result
in cohesive failure of the GIC, rather than failure within
the ion exchange layer.22 Consequently, the true
strength of the ion-exchange layer is not known;10,16

values in the range 3-10MPa are commonly reported,
i.e., approximately the cohesive strength of GIC.

Additional bonding mechanisms have been explored
for the RM-GICs, since the presence of resin suggests
that bonding analogous to resin composite may occur,
i.e., resin tags into enamel and establishment of a
hybrid layer into dentine. However, the experimental
evidence seems equivocal. Some workers25-27 have
demonstrated resin tags in the dentinal tubules, while
others28-30 did not appear to do so. The ‘hybrid layer’ of
resin-dentine bonding was apparently observed by
Pereira et al.,10,27 but could not be identified by Lin 
et al.25 or by Ramos and Perdigão.28 Bonding by an ion
exchange layer25 and ionically28 as for conventional
GICs has also been proposed.

Fluoride release
The release of fluoride ions is one of the notable

characteristics of GICs. It is present originally as a flux
in the manufacture of the glass, and is released from the
glass particles on mixing with the polyalkenoic acid.
The presence of fluoride also has benefits in increasing
translucency and strength and improving handling
properties.31 The mechanism of release is complex and
not fully understood. However, it is maximum in the
first few days and decreases rapidly to a lower level
over weeks, and maintains a low level over months.31 It
has also been shown that GIC can be ‘recharged’ with
fluoride, resulting in a subsequent short-term boost in
release.32,33 Most of the fluoride is released as sodium
fluoride, which is not critical to the cement matrix, and
thus does not result in weakening or disintegration of
the set cement.34 Resin-modified GICs show similar

Fig 3. A bonded specimen of a conventional glass ionomer cement
to demineralized dentine. The ‘acid-base resistant layer’ can be

observed at the interface (arrows). This has also been referred to as
the ‘ion-exchange layer’.



dynamics of fluoride release,35 although for both types
of material the dynamics of release and the amounts
released depend on the particular material and the
experimental design.

The clinical significance of the fluoride release is
controversial. Many laboratory studies using, for
example bacterial and demineralization-remineralization
models, have suggested that GIC will prevent secondary
caries.36-42 Clinical studies have shown an effect of GIC
on salivary fluoride levels,43 acidogenic bacteria44 and on
demineralized dentine restored with GIC and worn in
removable appliances.45 There is anecdotal clinical
evidence that secondary caries in association with GIC is
at a very low level. This has been supported by one
retrospective study,46 but significantly contradicted by a
cross-sectional study,47 and one five-year prospective
study was inconclusive.48 However, using an evidence-
based systematic review of the literature, there was no
evidence for or against an anti-cariogenic effect of GIC.49

Biological properties
The biocompatibility of the GICs has been

extensively reviewed by Sidhu and Schmalz,50 and the
reader is referred to this excellent paper for more detail.

The term ‘biocompatibility’ is frequently misused,
and is assumed to mean ‘inert’. However, the accepted
definition is more complex: ‘the ability of a material to
elicit an appropriate biological response in a specific
application.’50 Therefore, in the context of restorative
materials it is important to identify the tissues with
which the material may come into contact. For GIC,
these tissues are dentine (and therefore pulp), gingivae,
and oral mucosa.

Sidhu and Schmalz50 have recommended that the
relevant issues regarding biocompatibility of GICs are
the release of degradation products, cytoxicity in
various situations, antibacterial properties, osteogenic
effects, long-term host and tissue response and the
effect on dental personnel.

Several metallic ions are released from GIC, as well
as fluoride. The highest release occurs from the unset
material, and as described above, most research has
been done on fluoride. Hydroxethylmethacrylate
(HEMA) is released from RM-GICs and can diffuse
through dentine in laboratory studies. Since HEMA can
induce allergic and toxic responses, the clinical
relevance of its release requires more investigation.50

Nevertheless, to date there is no evidence that HEMA
in dental materials is responsible for any local or
systematic adverse effects.

The pH of GIC increases as the cement sets.11 It has
been suggested that the initial low pH may be
responsible for the early anecdotal reports of sensitivity
following crown cementation.51 However, laboratory
studies indicate that the dentine buffers the hydrogen
ions released from GIC, 52 and objective reports53,54 have
shown that GIC was not associated with post-operative
sensitivity.

There have been numerous cytotoxicity tests of several
GICs.50 The trend has been that GIC is more cytotoxic
when freshly mixed, and that cytotoxicity decreases as
the material sets. The equivocal nature of the results
indicates that direct pulp testing is necessary. However, in
pulp and connective tissue studies the results are also
equivocal, and appear to depend on the particular brand
of GIC being evaluated. A further complication in
interpreting human and animal studies is the generally
accepted theory that bacterial microleakage is
responsible for the majority of pulp damage. The
contribution of material damage and bacterial damage to
overall damage is difficult to separate.50

Glass-ionomer cement has been shown to have an
antimicrobial effect in several studies, and greater than
that shown by other materials such as amalgam and
resin composite. However, again it is difficult to do
more than generalize, as the results depend on the
experimental method, the bacteria used and the
product tested.50 There are several theories regarding
the antibacterial activity. Most workers propose that
fluoride is responsible, possibly acting synergistically
with pH. However, other released agents have been
cited as possible antibacterials, including zinc55 and
polyalkenoic acid,56 acting alone or synergistically with
pH and fluoride.57

Additional studies have been carried out on the
biological properties of RM-GICs.50 It might be expected
that a different pattern of pulp damage might occur
because of the presence of unreacted monomer.
However, the results are also equivocal. This issue has
been explored in detail elsewhere,50 and the reader is
referred there for more information. One of the principal
reasons for the wide variation in results is the lack of
standardization among testing protocols, even though
standard tests have been available for some time.50

Clinical performance
One of the principal benefits of GICs is their

adhesion to the dental hard tissues, and this has been
confirmed in non-undercut non-carious cervical lesions
(NCCLs) where dentine is the main substrate.46,58-60

However, because of the low fracture toughness of
GICs (including RM-GICs), they are recommended
principally for non-stress-bearing areas, e.g., carious
and non-carious cervical lesions and approximal
anterior lesions. Nevertheless, the high powder:liquid
ratio materials may be useful in the restoration of small
cavities in deciduous teeth14 (Fig 1, 2). Clinical studies
on RM-GICs are less extensive because of their more
recent introduction.61-69 However, the results are mixed
with respect to both brand comparisons and
comparisons with polyacid-modified resin composites.
One presentation of an RM-GIC is in a low
powder:liquid ratio form (Fuji Bond LC; GC
International), and is used in a similar way to a dentine
bonding agent. Excellent five-year results have been
obtained for the retention by this material of resin
composite in non-carious cervical lesions.70
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Evidence is accumulating that GIC may have an
important role in minimum intervention dentistry.11,71

Modern concepts of operative dentistry propose that
only the ‘infected’ dentine should be removed, leaving
the ‘affected’ dentine which has the potential to
remineralize.72,73 Recent evidence suggests that such
remineralization may be potentiated by GIC,74,75 and
this has special relevance in the ART technique.73,76

Types I and II glass-ionomer cements
Although the focus of this review has been on Type

II (Restorative) GICs, the important role of Type I
(luting) and Type III (liner/base and fissure sealants)
should not be ignored. The ‘cervical lining’ technique
(also known as the ‘open sandwich’, a term not
favoured by the first author) was described in 1984,7

and clinical trials are supporting its usefulness,
provided that an appropriate GIC is used.77-80 Glass-
ionomer cements can be effective fissure sealants and
are useful when optimum moisture control for resin-
based sealants cannot be achieved.81 Although clinical
retention appears less than for resin-based sealants,
prevention of fissure caries is comparable.81,82

Dentine bonding agents
The concept of bonding a restorative material to the

dentine surface is by no means a new idea. Even at the
time of Buonocore using phosphoric acid to bond to
enamel, the idea of bonding to dentine was considered.
However, due to limitations of materials and
knowledge of the structure and nature of dentine the
dream remained just that until the late ’70s. In fact
Buonocore did try to introduce a dentine adhesive but
was unsuccessful.83 The earliest bonding agent which
showed some success was introduced by Fusayama.84,85

At the same time Bowen86 in the USA started
investigating new formulations of resins that were more
water tolerant as well as methods of treating the
dentine with oxalates to gain adhesion. The concern of
many clinicians at that time was the potential damage
phosphoric acid was going to cause the dental pulp if
dentine was etched. This led to the development of the
first Scotchbond (3M Dental, St Paul, Minnesota,
USA), a phosphate ester of Bis-GMA. This material
could almost be considered as the first self-etching
priming material for dentine, although it was
recognized the enamel needed to be etched.87,88

The first material to be truly successful in bonding to
dentine was introduced as GLUMA (Bayer Dental,
Leverkusen, Nordrhein-Westfeld, Germany). This
material used EDTA to etch or condition the dentine
which was then primed with a solution of
formaldehyde and 2-hydroxyethylmethacrylate
followed by a bonding resin of Bis-GMA.89 The
mechanism proposed for this material was to bond to
the organic component of the dentine, namely the
collagen. The first work to investigate the mechanism
of bonding to the dentine was by Nakabayashi.90 His
paper of 198290 has now become one of the classic

papers to first identify a layer between the resin and
dentine substrate referred to as ‘hybrid’ dentine, in that
it was the organic components of the dentine that had
been permeated by resin (Fig 4).90 The term ‘hybrid
layer’ has now become synonymous with bonding of
resins to etched dentine. There has been a tremendous
amount of research done on the hybrid layer, its
structure, formation and how it can be improved.
Without a hybrid layer a bond will not be formed to the
dentine. Therefore, it is essential for some modification
to be made to the dentine surface so a mechanical
interlocking of resin around dentinal collagen can
occur. This layer has also been referred to as the ‘resin-
dentine interdiffusion zone’.91

Classification
Dentine bonding agents have gone through many

changes over the last 10 years. This has led some people
to refer to the changes as ‘generations’ of material,
implying that there has been some chronological
development. This is a falsehood — for example, the
first ‘self-etching’ type material was introduced by
Coltène (Altstätatten, Switzerland) as ‘ART Bond’.
Therefore, it is more logical to classify materials by the
number of steps needed to complete the bonding
process.

‘Three-step’ or ‘Conventional’ systems
This group represents those materials that have

separate etching, priming and adhesive steps. It just so
happens that this group of materials is also the oldest.
However, they are still widely used and have been
shown to provide reliable bonding. The greatest
problem with this group would seem to be that three
distinct steps are needed, which gives rise to possible
problems through contamination of the bonded surface
prior to placement of the resin composite filling
material; in other words, they are more technique
sensitive (Fig 5).

Fig 4. Bonded specimen in which the dentine (mineral and protein)
has been removed. The infiltration of resin into the acid-etched

dentine can be seen with an associated permeation of resin
throughout the dentine tubular network and its lateral branches.



‘Two-step’ systems
This group has two subgroups; the first includes

those systems that have a separate etch and have
combined the priming and bonding steps. These
systems are often referred to as ‘Single-bottle’ systems.
In general, the problems experienced with the
Conventional Systems still exist with the Single-bottle
systems. Although one step has been eliminated, the
great problem is ensuring good infiltration of the
priming-bond into the demineralized dentine. The other
subgroup combines the etching and priming steps
together and are referred to as ‘Self-etching primers’.
These systems also have not been without their
problems. The major concern has been their ability to
etch the enamel to a great enough extent to ensure a
good seal. This seems to be overcome now.92 The
problem of technique sensitivity also seems to have
been significantly reduced with these systems compared
with the Conventional and Single-bottle systems.93 This
is attributed to the fact that the self-etching priming
agent does not have to be washed off the dentine,
therefore eliminating the need to maintain the dentine
in a moist state. The method of demineralization of
these materials is by the use of an acidic resin that
etches and infiltrates the dentine simultaneously (Fig 6).
The dentine is an excellent buffer, so the acidity of the
self-etching primer is rapidly reduced and after
polymerization is neutralized.94 A recent study
compared the 24-hour bond strengths of an etch and
rinse adhesive (Single-bottle) and a self-etching priming
adhesive after enamel and dentine had been prepared
using different methods.95 It was shown that treating
the enamel or dentine with an Er:Yag laser produced a
significant reduction in bond strength compared with
preparation using a diamond bur, diamond-
sonoabrasion or airbrasion.

‘One-bottle’ or ‘All-in-one’ systems
This fourth group is the simplest of all the DBAs.

They combine all steps into one process. Their mode of

demineralization is identical to that of the self-etching
priming materials, but the bonding resin is also
incorporated. These systems also have the problem of
not etching the enamel as effectively as phosphoric
acid. In addition these systems are the newest and have
no long-term clinical data to demonstrate their
effectiveness, although early studies are showing some
variability in the success of these materials.96,97

Bonding mechanism
As already mentioned, the mechanism of bonding of

resin-based DBAs is via a hybrid layer. This is a
micromechanical interlocking of resin around dentinal
collagen fibrils that have been exposed by
demineralization. The interlocking occurs by the
diffusion of the resins in the primer and bonding resin.
The formation and structure of the hybrid layer has
been extensively studied, and has also been referred to
as the resin-impregnated layer, the resin-dentine
interdiffusion zone. This came about with the use of
argon-ion beam etching introduced by Inokoshi98 and
later Van Meerbeek and his co-workers who provided
some of the first detailed descriptions of the hybrid
layer.99-103 The thickness of the hybrid layer ranges from
less than 1µm for the all-in-one systems to up to 5µm
for the conventional systems. The strength of the bond
is not dependent on the thickness of the hybrid layer, as
the self-etching priming materials have shown bond
strengths greater than many other systems but exhibit a
thin hybrid layer. At the same time as Van Meerbeek 
et al.99 described the hybrid layer, Sugizaki104 showed
that the etching, washing and drying process caused the
dentine to collapse due to the loss of the supporting
hydroxyapatite. Further work showed that this collapse
of the collagen was an impediment to the successful
diffusion of the resin to the base of the region of
demineralization. To overcome this problem, Kanca105

introduced the ‘wet bonding technique’ which left the
demineralized collagen fibres supported by residual
water after washing. This allowed the priming solution
to diffuse throughout the collagen fibre network more
successfully. However, when it comes to clinical
practice, it is very difficult to find the correct balance of
residual moisture. Sano et al.106 showed in their work
on nanoleakage that most resin-based DBAs allowed
the ingress of silver nitrate along the base of the hybrid
layer. However, the clinical significance of this is
unclear. It may be a pathway for fluid to affect collagen
not coated by resin, and the outcome may be
degradation of the bond over time. However, the degree
of nanoleakage is very much material dependent rather
than system dependent,107 meaning that there are
conventional systems and self-etching priming systems
that show small amounts of nanoleakage whereas
others show more. For the self-etching systems, these
are able to solubilize the smear layer and demineralize
the underlying dentine, forming a quite thin hybrid
layer.108
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Fig 5. SEM of conventional system showing a hybrid layer of
approximately 3µm thick (arrows). The dentine has been partially

removed to show tags entering the tubules.
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Bonding substrate
Dentine is quite a variable tissue. Within the tooth

itself the dentine approaching the dentino-enamel
junction is more highly mineralized and the area
occupied by the tubules is less than that of dentine
adjacent to the pulp.109 In addition to this, dentine
should be considered as a dynamic tissue that changes
due to ageing, in response to caries and restoration
placement. Most changes relate to occlusion of tubules
and also an increase in the mineralization of the
dentine. The implication of this is that the dentine
becomes slightly more difficult to etch and exposure of
collagen fibrils can also be reduced, hence there is a
potential for the bond to be somewhat tenuous. This is
particularly the case for the highly sclerosed dentine of
non-carious cervical lesions. Laboratory studies
indicate that the hybrid layer of the dentine surface of
NCCLs is thinner than that of normal dentine.110,111 In
addition, it seems that some bonding systems do not
adhere as well to this surface and show a slightly
decreased bond strength.

A considerable amount of work has also been done
looking at the variation of the bond to caries-affected
dentine. Some of the early studies used artificial caries-
like lesions. However, this does not reproduce the
situation that occurs in the oral cavity since caries is a
process of demineralization and remineralization
associated with the damage of the supporting collagen
matrix.112,113 For those studies that have investigated the
bond strength to caries on extracted teeth, the hybrid
layer tends to be thicker and the bond less, although
this is bonding system dependent.114,115 The increased
thickness of the hybrid layer is mainly because the
dentine is already partially demineralized from the
caries and the action of the acid etch is therefore
somewhat greater. This provides a clear basis for not
etching for longer than that recommended by the
manufacturer.116 In addition, the water content of
caries-affected dentine is believed to be greater than
normal dentine. This too will also have an effect on the

ability of the resins to penetrate to the full depth of the
demineralized dentine. In the case of caries-affected
dentine treated with chemo-mechanical caries removal
solutions, there appear to be no adverse effects on the
bond with a DBA.117-121

However, the bond to radicular and pulp chamber
dentine does seem to vary quite a lot depending on the
DBA used.122-126 This perhaps provides a strong case for
being careful with the selection of a DBA for these
regions of the tooth. It is believed that it maybe
necessary to use different DBAs for different regions of
the tooth, or a system needs to be selected where it has
been shown to provide a reliable bond to all parts of
the tooth. Another alternative is the use of GIC
restorative materials when then is a deep cavity on the
radicular surface of a tooth, as it is known that a
reliable bond can be achieved and moisture control is
not such a problem.

Clinical studies
There has been a considerable amount of work done

to evaluate the success or otherwise of DBAs in clinical
studies. However, one of the great problems has been
that many of the DBAs have been considerably changed
or a new material introduced by the time these studies
are completed or published. Many of the studies have
also been performed on NCCL, which means the
outcomes can not really be applied to restorations in
other parts of the mouth because NCCL dentine is
usually sclerosed and therefore different from that of an
intracoronal cavity. However, these outcomes will
provide some indication as to whether the DBA is able
to achieve a durable bond under very harsh conditions.
Since the early materials were introduced, the retention
rates of the DBAs to sclerosed cervical dentine have
steadily improved to extent that retention rates are little
different from GICs.

With regard to clinical studies on posterior teeth
restored with a DBA, there is still little evidence
available.127-131 It would seem though, that clinical
studies of resin composite restorations are showing
evidence that when placed in the correct manner and
the patient has a low caries rate, restoration survival is
approaching that of amalgam.132

When it comes to the use of DBAs, it is important to
follow the manufacturers’ directions carefully. Over-
etching can create a situation where there will
potentially be a region of poorly or uninfiltrated
dentine. This zone may be susceptible to acid or enzyme
attack from oral bacteria, hence leading to bond
failure.133-135

In the case of the self-etching priming materials, this
is not believed to be a problem. However, the converse
problem may occur: as mentioned, the dentine or smear
layer may neutralize the etching primer if the primer
has a relatively high pH. The anecdotal evidence would
seem to indicate that gentle agitation of these solutions
may assist with the etching. However, there are no
research data to support this.

Fig 6. SEM of a self-etching priming system showing a 1µm thick
hybrid layer (H) between the arrows. These systems can remove

smear plugs allowing resin infiltration into the tubules and lateral
branches.



CONCLUSIONS
The last 35 years has seen major developments in

adhesive materials, particularly the glass-ionomer
cements and DBAs, and their introduction has
facilitated the concepts of ‘minimum intervention
dentistry’. Further improvements in these materials can
be expected, particularly with respect to the toughness
of GICs and the reliability and ease of use of DBAs.
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